Sol-gel coatings with the fluorescence dye Rhodamine B for optical modification of cotton

Authors

  • Wang Yuan Hochschule Niederrhein, Faculty Textile and Clothing Technology, Mönchengladbach, Germany
  • Thomas Grethe Hochschule Niederrhein, Faculty Textile and Clothing Technology, Mönchengladbach, Germany https://orcid.org/0000-0001-9625-327X
  • Boris Mahltig Hochschule Niederrhein, Faculty of Textile and Clothing Technology, Mönchengladbach, Germany https://orcid.org/0000-0002-2240-5581

DOI:

https://doi.org/10.25367/cdatp.2023.4.p1-17

Keywords:

fluorescence, UV light, Sol-gel, silica, nanosol, optical functionalization, Rhodamine B, Textile finishing, cotton

Abstract

The sol-gel method is a versatile tool for the modification and functionalization of textiles. This method can be also used to support the application of dyes on textile materials. This paper is related to the application of the fluorescence dye Rhodamine B together with an industrial sol-gel component. Beside fluorescence spectroscopy, also scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) are used for the investigation of the produced textile samples. The realized fluorescence effects are strongly related to the applied dye concentration and can be drastically enhanced by presence of the applied sol-gel system. By use of sol-gel method also the dry and the wet rubbing fastness can be improved. These results could be the starting point for future development of new fluorescent textile materials.

References

Brinker, C.J.; Hurd, A.J.; Schunk, P.R.; Frye, G.C.; Ashley, C.S. Review of sol-gel thin film formation. J. Non-Cryst. Solids 1992, 147, 424-436. DOI: https://doi.org/10.1016/S0022-3093(05)80653-2.

Schmidt, H. Multifunctional inorganic-organic composite sol-gel coatings for glass surfaces. J. Non-Cryst. Solids 1994, 178, 302-312. DOI: https://doi.org/10.1016/0022-3093(94)90299-2.

Guglielmi, M. Sol-gel coatings on metals. J. Sol-Gel Sci. Technol. 1997, 8(1), 443-449. DOI: https://doi.org/10.1023/A:1018373404815.

Figueira, R.B.; Silva, C.J.; Pereira, E. V. Organic-inorganic hybrid sol-gel coatings for metal corrosion protection: a review of recent progress. J. Coat. Technol. Res. 2015, 12(1), 1-35. DOI: https://doi.org/10.1007/s11998-014-9595-6.

Mahltig, B.; Böttcher, H.; Rauch, K.; Dieckmann, U.; Nitsche, R.; Fritz, T. Optimized UV protecting coatings by combination of organic and inorganic UV absorbers. Thin Solid Films 2005, 485(1-2), 108-114. DOI: https://doi.org/10.1016/j.tsf.2005.03.056.

Mahltig, B.; Swaboda, C.; Roessler, A.; Böttcher, H. Functionalising wood by nanosol application. J. Mater. Chem. 2008, 18(27), 3180-3192. DOI: https://doi.org/10.1039/B718903F.

Mahltig, B.; Arnold, M.; Löthman, P. Surface properties of sol-gel treated thermally modified wood. J. Sol-Gel Sci. Technol. 2010, 55(2), 221-227. DOI: https://doi.org/10.1007/s10971-010-2236-3.

Mahltig, B.; Leisegang, T.; Jakubik, M.; Haufe, H. Hybrid sol-gel materials for realization of radiation protective coatings – a review with emphasis on UV protective materials. J. Sol-Gel Sci. Technol. 2021, online first.

Uhlmann, D.R.; Suratwala, T.; Davidson, K.; Boulton, J.M.; Teowee, G. Sol-gel derived coatings on glass. J. Non-Crystalline Solids 1997, 218, 113-122. DOI: https://doi.org/10.1016/S0022-3093(97)00162-2.

Campostrini, R.; Carturan, G.; Caniato, R.; Piovan, A.; Filippini, R.; Innocenti, G.; Cappelletti, E. M. Immobilization of plant cells in hybrid sol-gel materials. J. Sol-Gel Sci. Technol. 1996, 7(1), 87-97. DOI: https://doi.org/10.1007/BF00401888.

Ogihara, T.; Ogata, N.; Sakamoto, Y.; Nagata, N.; Sigekura, Y. Ceramic coating on the glass fiber by sol-gel method. Journal of the Textile Machinery Society of Japan 1999, 45(4), 113-118. DOI: https://doi.org/10.4188/jte1955.45.113.

Chladova, A.; Wiener, J.; Luthuli, J.M.; Zajiova, V. Dyeing of glass fibres by the sol gel method. AUTEX Res. J. 2011, 11, 18-23.

Böttcher, H.; Kallies, K.-H.; Textor, T.; Schollmeyer, E., Bahners, T. Beschichtungsmittel, insbesondere für textile und polymere Materialien. DE19756906A1, 1997.

Mahltig, B.; Haufe, H.; Böttcher, H. Functionalisation of textiles by inorganic sol-gel coatings. J. Mater. Chem. 2005, 15(41), 4385-4398. DOI: https://doi.org/10.1039/B505177K.

Mahltig, B.; Textor, T. Nanosols and Textiles; World Scientific, Singapore, 2008.

Ismail, W.N.W. Sol-gel technology for innovative fabric finishing – a review. J. Sol-Gel Sci. Technol. 2016, 78(3), 698-707. DOI: https://doi.org/10.1007/s10971-016-4027-y.

Periyasamy, A. P.; Venkataraman, M.; Kremenakova, D.; Militky, J.; Zhou, Y. Progress in sol-gel technology for the coatings of fabrics. Materials 2020, 13, 1838. DOI: https://doi.org/10.3390/ma13081838.

Elkashouty, M.; Elsayed, H.; Twaffiek, S.; Salem, T.; Elhadad, S. S. M. An Overview: Textile Surface Modification by Using Sol-gel Technology. Egyptian Journal of Chemistry 2020, 63, 3301-3311. DOI: https://doi.org/10.21608/ejchem.2020.24441.2464.

Textor, T.; Mahltig, B. A sol-gel based surface treatment for preparation of water repellent antistatic textiles. Appl. Surf. Sci. 2010, 256(6), 1668-1674. DOI: https://doi.org/10.1016/j.apsusc.2009.09.091.

Textor, T.; Mahltig, B. Nanosols for preparation of antistatic coatings simultaneously yielding water and oil repellent properties for textile treatment. Materials Technology 2010, 25(2), 74-80. DOI: https://doi.org/10.1179/175355510X12716725525555.

Chen, G.; Haase, H.; Mahltig, B. Chitosan-modified silica sol applications for the treatment of textile fabrics: a view on hydrophilic, antistatic and antimicrobial properties. J. Sol-Gel Sci. Technol. 2019, 91(3), 461-470. DOI: https://doi.org/10.1007/s10971-019-05046-8.

Mahltig, B.; Fiedler, D.; Böttcher, H. Antimicrobial sol–gel coatings. J. Sol-Gel Sci. Technol. 2004, 32(1), 219-222. DOI: https://doi.org/10.1007/s10971-004-5791-7.

Xing, Y.; Yang, X.; Dai, J. Antimicrobial finishing of cotton textile based on water glass by sol-gel method. J. Sol-Gel Sci. Technol. 2007, 43(2), 187-192. DOI: https://doi.org/10.1007/s10971-007-1575-1.

Tomšič, B.; Simončič, B.; Orel, B.; Černe, L.; Tavčer, P.F.; Zorko, M.; Jerman, I.; Vilcnik, A.; Kovač, J. Sol-gel coating of cellulose fibres with antimicrobial and repellent properties. J. Sol-Gel Sci. Technol. 2008, 47(1), 44-57. DOI: https://doi.org/10.1007/s10971-008-1732-1.

Mahltig, B.; Textor, T. Silver containing sol-gel coatings on polyamide fabrics as antimicrobial finish-description of a technical application process for wash permanent antimicrobial effect. Fibers and Polymers 2010, 11(8), 1152-1158. DOI: https://doi.org/10.1007/s12221-010-1152-z.

Alongi, J.; Malucelli, G. State of the art and perspectives on sol–gel derived hybrid architectures for flame retardancy of textiles. J. Mater. Chem. 2012, 22(41), 21805-21809. DOI: https://doi.org/10.1039/C2JM32513F.

Grancaric, A.M.; Colleoni, C.; Guido, E.; Botteri, L.; Rosace, G. Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric. Progress in Organic Coatings 2017, 103, 174-181. DOI: https://doi.org/10.1016/j.porgcoat.2016.10.035.

Kappes, R.S.; Urbainczyk, T.; Artz, U.; Textor, T.; Gutmann, J.S. Flame retardants based on amino silanes and phenylphosphonic acid. Polymer Degradation and Stability 2016, 129, 168-179. DOI: https://doi.org/10.1016/j.polymdegradstab.2016.04.012.

Mahltig, B.; Knittel, D.; Schollmeyer, E.; Böttcher, H. Incorporation of triarylmethane dyes into sol–gel matrices deposited on textiles. J. Sol-Gel Sci. Technol. 2004, 31(1), 293-297. DOI: https://doi.org/10.1023/B:JSST.0000048006.70681.7c.

Mahltig, B.; Böttcher, H.; Knittel, D.; Schollmeyer, E. Light fading and wash fastness of dyed nanosol-coated textiles. Textile Res. J. 2004, 74(6), 521-527. DOI: https://doi.org/10.1177/004051750407400610.

Mahltig, B.; Textor, T. Combination of silica sol and dyes on textiles. J. Sol-Gel Sci. Technol. 2006, 39(2), 111-118. DOI: https://doi.org/10.1007/s10971-006-7744-9.

Yin, Y.; Wang, C.; Wang, C. An evaluation of the dyeing behavior of sol–gel silica doped with direct dyes. J. Sol-Gel Sci. Technol. 2008, 48(3), 308-314. DOI: doi.org/10.1007/s10971-008-1819-8.

Juan, D.; Li, Z.; Shuilin, C. Wash fastness of dyed fabric treated by the sol–gel process. Color. Technol. 2005, 121(1), 29-36. DOI: https://doi.org/10.1111/j.1478-4408.2005.tb00245.x.

dos Santos, C.; Brum, L.F.W.; de Fátima Vasconcelos, R.; Velho, S.K.; dos Santos, J.H.Z. Color and fastness of natural dyes encapsulated by a sol-gel process for dyeing natural and synthetic fibers. J. Sol-Gel Sci. Technol. 2018, 86(2), 351-364. DOI: https://doi.org/10.1007/s10971-018-4631-0.

Schramm, C.; Rinderer, B. Dyeing and DP Treatment of Sol-gel Pre-treated Cotton Fabrics. Fibers and Polymers 2011, 12, 226-232. DOI 10.1007/s12221-011-0226-x.

Raditoiu, A.; Raditiou, V.; Amariutei, V.; Purcar, V.; Ghiurea, M.; Raduly, M.; Wagner, L. Surface Coating on Cellulose Fabrics with Nonionic Dyes – Silica Hybrids. Materiale Plastice 2015, 52, 442-448.

Trovato, V.; Mezzi, A.; Brucale, M.; Abdeh, H.; Drommi, D.; Rosace, G.; Plutino, M. R. Sol-Gel Assisted Immobilization of Alizarin Red S on Polyester Fabrics for Developing Stimuli-Responsive Wearable Sensors. Polymers 2022, 14, 2788. DOI: https://doi.org/10.3390/polym14142788.

Grancarić, A. M.; Tarbuk, A.; Sutlović, A.; Castellano, A.; Colleoni, C.; Rosace, G.; Plutino, M. R. Enhancement of acid dyestuff salt-free fixation by a cationizing sol-gel based coating for cotton fabric. Colloids and Surfaces A 2021, 612, 125984. DOI: https://doi.org/10.1016/j.colsurfa.2020.125984.

Gupta, V.; Jose, S.; Kadam, V.; Shakyawar, D. B. Sol gel synthesis and application of silica and titania nano particles for the dyeing and UV protection of cotton fabric with madder. Journal of Natural Fibers 2022, 19, 5566-5576. DOI: https://doi.org/10.1080/15440478.2021.1881688.

Mahltig, B.; Textor, T.; Kumbasar, P. A. Photobactericidal and photochromic textile materials realized by embedding of advantageous dye using sol-gel technology. Celal Bayar University Journal of Science 2015, 11(3), 306-315. DOI: https://doi.org/10.18466/cbujos.44647.

Boukhriss, A.; Roblin, J.P.; Aaboub, T.; Boyer, D.; Gmouh, S. Luminescent hybrid coatings prepared by a sol-gel process for a textile-based pH sensor. Mater. Adv. 2020, 1(4), 918-925. DOI: https://doi.org/10.1039/D0MA00211A.

Mahltig, B.; Leuchtges, G.; Holstein, P. T-shirts – an overview on price range, functional materials and European production. Tekstilna Industrija 2022, 70, 4-13. DOI: https://doi.org/10.5937/TEKSTIND2204004M

Mahltig, B.; Ernst, V.; Schröder, L. Overview on commercial fluorescence textile products. Commun. Dev. Assem. Text. Prod. 2023, in press.

Ding, W.; Sun, J.; Chen, G.; Zhou, L.; Wang, J.; Gu, X.; Wan, J.; Pu, X.; Tang, B.; Wang, Z. L. Stretchable multi-luminescent fibers with AIEgens. Journal of Materials Chemistry C 2019, 7, 10769-10776. DOI: https://doi.org/10.1039/C9TC03461G.

Luepong, K.; Punyacharoennon, P.; Sarakarnkosol, W. A Kinetic and Thermodynamic Study of CI Fluorescent Brightener 113 on Cotton. Prog. Color Colorants Coat. 2022, 15, 225-233.

Dalponte, E.; Mahltig, B.; Breckenfelder, Luminous Textiles for UV-Protection and Light Effect Application. In: Textiles: Advances in Research and Applications; Mahltig, B. (Ed.), Nova Science Publishers Inc., New York, USA, 2018; pp. 167-182.

Baatout, K.; Saad, F.; Baffoun, A.; Mahltig, B.; Kreher, D.; Jaballah, N.; Majdoub, M. Luminescent cotton fibers coated with fluorescein dye for anti-counterfeiting applications. Materials Chemistry and Physics 2019, 234, 304-310. DOI: https://doi.org/10.1016/j.matchemphys.2019.06.007.

Saad, F.; Baffoun, A.; Mahltig, B.; Hamdaoui, M. Polyester Fabric with Fluorescent Properties Using Microwave Technology for Anti-Counterfeiting Applications. Journal of Fluorescence 2022, 32, 327-345. DOI: https://doi.org/10.1007/s10895-021-02845-7.

Aysha, T.; El-Sedik, M.; El Megied, S. A.; Ibrahim, H.; Youssef, Y.; Hrdina, R. Synthesis, spectral study and application of solid state fluorescent reactive disperse dyes and their antibacterial activity. Arabian Journal of Chemistry 2019, 12, 225-235. DOI: http://dx.doi.org/10.1016/j.arabjc.2016.08.002.

Youm, K.; Kumar, S.; Koh, J. Synthesis and Spectral Properties of Fluorescent Phthalimidylhydrazone Disperse Dyes and their Application to Poly(ethylene terephthalate) Dyeing. Fibers and Polymers 2022, 23, 2667-2678. DOI https://doi.org/10.1007/s12221-022-0150-2.

Liu, H.; Lu, M.; Pan, F.; Ning, X.; Ming, J. Influence of fluorescent dyes for dyeing of regenerated cellulose fabric. Textile Res. J. 2020, 90, 1385-1395. DOI: https://doi.org/10.1177/0040517519892915.

Marae, I.S.; Sharmoukh, W.; Bakhite, E.A.; Moustafa, O.S.; Abbady, M.S.; Emam, H.E. Durable fluorescent cotton textile by immobilization of unique tetrahydrothienoisoquinoline derivatives. Cellulose 2021, 28, 5937-5956. DOI: https://doi.org/10.1007/s10570-021-03871-1.

Mahltig, B.; Greiler, L.C.; Haase, H. Microwave assisted conversion of an amino acid into a fluorescent solution. Acta Chimica Slovenica 2018, 65, 865-874. DOI: https://doi.org/10.17344/acsi.2018.4513.

Miao, H.; Schüll, E.; Günther, K.; Mahltig, B. Microwave Assisted Preparation for the Realisation of Functional and Colored Textiles. In: Textiles: Advances in Research and Applications; Mahltig, B. (Ed.), Nova Science Publishers Inc., New York, USA, 2018; pp. 29-60.

Nedelcev, T.; Krupa, I.; Lath, D.; Spirkova, M. The leaching of Rhodamine B, Naphthol Blue Black, Metanil Yellow and Bismarck Brown R from silica deposits on polyester and viscose textiles. J. Sol-Gel Sci. Technol. 2008, 46, 47-56. DOI: https://doi.org/10.1007/s10971-008-1713-4.

Colliex, C.; Kohl, H. Elektronenmikroskopie; Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 2007.

Flesner, J.; Mahltig, B. Fibers from Natural Resources. In: Handbook of Composites from Renewable Materials, Volume 4 – Functionalization; Thakur, V.K.; Thakur, M.K.; Kessler, M.R. (Eds.), Scrivener Publishing Wiley, Hoboken, New Jersey, USA, 2017; pp. 287-310.

Mahltig, B.; Grethe, T. High-Performance and Functional Fiber Materials – A Review of Properties, Scanning Electron Microscopy SEM and Electron Dispersive Spectroscopy EDS. Textiles 2022, 2, 209-251. DOI: https://doi.org/10.3390/textiles2020012.

Kasha, M.; Rawls, H. R.; Ashraf El-Bayoumi, M. The exciton model in molecular spectroscopy. Pure and Applied Chemistry 1965, 11(3-4), 371-392. DOI: https://doi.org/10.1351/pac196511030371.

Setiawan, D.; Kazaryan, A.; Martoprawiro, M.; Filatov, M. A first principles study of fluorescence quenching in Rhodamine B dimers: How can quenching occur in dimeric species? Phys. Chem. Chem. Phys. 2010, 12, 11238-11244. DOI: https://doi.org/10.1039/C004573J.

Mchedlov-Petrosyan, N.O.; Kholin, Y.V. Aggregation of Rhodamine B in Water. Russian Journal of Applied Chemistry 2004, 77, 414-422. DOI: https://doi.org/10.1023/B:RJAC.0000031281.69081.d0.

Wirnsberger, G.; Yang, P.; Scott, B. J.; Chmelka, B. F.; Stucky, G. D. Mesostructured materials for optical applications: from low-k dielectrics to sensors and lasers. Spectrochimica Acta Part A 2001, 57, 2049-2060. DOI: https://doi.org/10.1016/S1386-1425(01)00503-0.

Wirnsberger, G.; Stucky, G. D. Microring lasing from dye-doped silica/block copolymer nanocomposites. Chemistry of Materials 2000, 12, 2525-2527. DOI: https://doi.org/10.1021/cm001078h.

Cotton sample after application of Rhodamine B with 3 wt-% solved in pure iSys HPX

Downloads

Published

2023-02-08

How to Cite

Yuan, W., Grethe, T., & Mahltig, B. (2023). Sol-gel coatings with the fluorescence dye Rhodamine B for optical modification of cotton. Communications in Development and Assembling of Textile Products, 4(1), 1–17. https://doi.org/10.25367/cdatp.2023.4.p1-17

Issue

Section

Peer-reviewed articles